LEO-1 Homebrew Computer

Registers, Control Signals and Buses
Rev 1.7, 13th September 2017, John Croudy

Introduction

The LEO-1 CPU, like most digital computers, operates by fetching, decoding and executing
instructions which are stored in memory. Each instruction cycle results in the execution of one
instruction. These instructions perform operations on registers and sometimes memory or
memory-mapped devices. The Control Unit coordinates this process using a kind of state
machine built from combinational logic. The whole thing is run by a system clock which is
essentially just an oscillator. Each tick of this oscillator is called a clock cycle.

Fetching and execution of instructions proceeds in up to eight states, each state corresponding
to one clock cycle. Each clock tick moves to the next state. The first state is called State 0 and
the last is called State 7. The period of State 0 to 3 is called Phase 7 and the period of State 4 to
7 is called Phase 2.

This document describes the electrical signals that LEO-1 uses while it is running and what
these signals do. There are individual signals that originate in the state machine and groups of
signals (buses) that originate in registers.

Registers

In addition to the eight general-purpose registers in the Register Unit, there are several
Control Unit registers which are not directly visible to the programmer. These registers are
listed in the table below.

Name

Width

Function

PC

16

The Program Counter contains the address of the instruction being
fetched and executed. At the end of the instruction cycle, it is usually
incremented, but during a branch instruction a value between -128 and
127 is added to it. During the instruction fetch, the I-Bank and PC are
together placed on the address bus to form the 24-bit address of the
instruction to be fetched.

IR

16

The Instruction Register holds the current instruction. During states 0 and
1 this data is invalid. At state 2, the instruction fetch occurs and by state 3
the IR is stable and valid. This register creates the signals IRo to IR15.

I-Bank

The Instruction Bank register specifies the high 8 bits of the address of the
instruction to fetch. During the instruction fetch, this value is placed on
bits 23 to 16 of the address bus while the PC is placed on bits 15 to 0 of
the address bus.

D-Bank

The Data Bank register specifies the high 8 bits of the address of a
memory load or store operation. During a memory access instruction, this
value is placed on bits 23 to 16 of the address bus while the held R Bus is
placed on bits 15 to 0 of the address bus.

Signals

In the table below, the logic for each signal is defined in terms of other signals. This is written
in the same way that logic operations are specified in the C language. The signals are all
derived from either state signals or bits from the instruction register. These signal names
appear in the schematics and also in the Logisim simulation.

Signals with names that start with / use negative logic (active low). All other signals use positive
logic (active high). Because 74 series chips tend to use active low enable signals, the majority
of the single-bit signals in LEO-1 use negative logic. All multi-bit buses and registers, however,
use positive logic.

When a signal is referred to as being ‘active’ or ‘asserted’, both terms mean the signal's logic
state is true. Conversely, ‘inactive’ and ‘unasserted’ mean false. For positive logic signals, true
means the associated wire or PCB trace is high (5 volts). For negative logic signals, true means
the associated wire or PCB trace is low (0 volts).

Name

Pg

Description

/STATEn

C3

There can be up to eight states in each instruction cycle, each state lasting for
one clock cycle. Exactly one /STATEn signal is active during each state.

IRnNn

Cc7

There are 16 bits in one instruction word. After an instruction has been
fetched into the instruction register on state 2, each instruction bit creates a
signal called IR@ to IR15. On any given cycle, these bits are invalid prior to
state 2 as they will still contain the data from the previous instruction.

/PHASE1

C3

This signal is asserted during phase 1 of the instruction cycle. This occurs
during states 0 to 3.

/PHASE1 = /STATEO | | /STATE1 | | /STATE2 | | /STATE3

/PHASE2

C3

This signal is asserted during phase 2 of the instruction cycle. This occurs
during states 4 to 6.

/PHASE2 = /STATE4 || /STATES || /STATE6 || /STATE?

/RESET

C3

This signal is asserted when the reset button is pressed. It is connected to all
registers and the state counter which it clears to zero.

/OPREG C7 | This signal indicates that the instruction is Type 0 meaning a register or
memory instruction.
/OPREG = !IR15 && !IR14

/OPIMM C7 | This signal indicates that the instruction is Type 1 meaning an immediate
instruction.
/OPIMM = IIR15 && IR14

/OPJPBR | C7 | This signal indicates that the instruction is Type 2 meaning a jump or branch
instruction.
/OPJPBR = IR15 && !IR14

/OPMISC | C7 | Thissignalindicates that the instruction is Type 3 meaning a miscellaneous
instruction.
/OPMISC = IR15 && IR14

/SWHL C4 | This signal is asserted when the instruction is the swhl instruction.
/SWHL = /OPMISC && IRO && IR1 && !IR2

/REGIMM | C7 | Thissignalis asserted when /OPREG is asserted or /OPIMM is asserted.
/REGIMM = /OPREG || /OPIMM

/REGIMEX | C7 | Thissignalis asserted when /REGIMM is asserted, or /SWHL is asserted.
/REGIMEX = /REGIMM || /SWHL

/OPT C3 | This signal indicates that the instruction cycle is being optimized for speed. A

full eight clock cycles is only needed to complete memory load and store
operations. All other operations can be completed in only six clock cycles.
Therefore, when /MEM is not asserted, if the optimization is enabled, /OPT is
asserted. This causes the /REGWRI and /DATWRI signals to be asserted early,
which completes the necessary register and PC writes for that instruction. If
/OPT is active at state 6, the state counter resets to zero and the instruction
ends early. This optimization can be switched off by using a jumper. This is
an experiment to see what affect it has on the overall speed of a program.

/OPT = optimization-enabled && !/MEM

/IRCODEn | C4 | Thisis a set of internal signals that are generated by the low three bits of the
instruction register. They are used by miscellaneous and jump/branch
instructions.

/IRCODE@® = !IR2 && !IR1 && !IR@
/IRCODE1 = !IR2 && !IR1 && 1IR®@
/IRCODE2 = !IR2 && 1IR1 && !IR@
/IRCODE3 = IIR2 &% IR1 && IR@
/IRCODE4 = 1IR2 && !IR1 && !IR@
/IRCODE5 = 1IR2 && !IR1 && 1IR®@
/IRCODE6 = 1IR2 && 1IR1 && !IR@
/IRCODE7 = 1IR2 &% 1IR1 && 1IR@

/JUMP C4 | This signal is asserted when the instruction is the jump instruction.
/JUMP = /OPJPBR && /IRCODE@

/HALT C4 | This signal is asserted when the instruction is the halt instruction.
/HALT = /OPMISC && /IRCODE7

/CR C4 | When active, this signal resets the state counter to zero. It is asserted when
/HALT is active. It is also asserted if /OPT is active on state 5 and thus ends
the instruction early.

/CR = /HALT || (/OPT && /STATES)

/REGWRI | C3 | This signal causes the Register Unit to write the contents of the RIN bus to
the C-selected register. It is asserted during state 6 (or state 4 if /OPT is
asserted).

/REGWRI = /REGIMEX && !/MEMST && (/OPT ? /STATE4 : /STATEG6)

/DATWRI | C3 | Thisis anintermediate signal which is used to generate the /BANKWRI and
PCWRI signals. It is asserted during state 7 (or state 5 if /OPT is asserted).
/DATWRI = /OPT ? /STATES5 : /STATE?7

/BANK C4 | Thisis an intermediate signal which indicates that the instruction is a bank
or banki instruction.

/BANK = /OPMISC && (/IRCODE1 || /IRCODE2)
/BANKWW | C4 | Thisis an intermediate signal which indicates that the instruction is a jump,

bank or banki instruction, all of which require a write to a bank register.

/BANKWW = /JUMP || /BANK

/BANKWRI | C4 | This signal is the bank write strobe. When asserted, one of the two bank
registers gets a write signal and stores the data currently on HRBUS<7:0>.
Which bank register performs the write depends on other signals.
/BANKWRI = /BANKWW && /DATWRI
/BREGLIT | C4 | This signal indicates that the instruction is an immediate instruction, either
immediate to register or immediate to bank. It is used to decide whether to
use the B Bus or the literal value instruction bits as the ALU ‘B’ operand.
/BREGLIT = /OPIMM || (/OPMISC && /IRCODE1)
/ZERO C4 | This signal is asserted when the data on the held C Bus is zero.
/ZERO = (HCBUS == @)
/PLUS C4 | This signal is asserted when the signed value on the held C Bus is positive.
/PLUS = (@ == HCBUS & 0x8000)
/TAKEBRA | C4 | This signal is asserted when the instruction is a branch instruction and the
branch will be taken.
CANBRA = /IRCODE7? | |
(/IRCODE3 && /ZERO) ||
(/IRCODE4 && !/ZERO) ||
(/IRCODE5 && /PLUS) ||
(/IRCODE6 && !/PLUS)
/TAKEBRA = /OPJPBR && CANBRA
IMEM C7 | Thisis an alias for IR3. When the instruction is Type 0 it indicates a memory
read or write operation.
IMEM = IR3
IMEMWR C7 | This is an alias for IR4. When the instruction is Type 0 and IMEM is asserted,
it indicates a memory write operation.
IMEMWR = IR4
/MEM C3 | This signal is asserted when the instruction is a memory instruction.
/MEM = /OPREG && IMEM
/MEMLD C3 | This signal is asserted when the instruction is a memory load instruction.

/MEMLD = /MEM && !IMEMWR

/MEMST

C3

This intermediate signal is asserted when the instruction is a memory store
instruction.

/MEMST = /MEM && IMEMWR

/MEMW

C3

This signal is asserted during phase 2 when the instruction is a memory store
instruction.

/MEMW = /PHASE2 && /MEMST

/MEMEN

C3

This signal is the select enable for memory and devices. When this signal is
asserted, the Memory Unit's address decoder enables the device that is
assigned to the address currently on the address bus. This device may then
perform a read (when /OE is asserted) or a write (when /WE is asserted).
/MEMEN is always asserted during states 1 and 2 so that the current
instruction can be fetched. It is also asserted during states 4 to 6 if the
instruction is a memory instruction.

STATE456 = /STATE4 || /STATE5 || /STATE6
/MEMEN = /STATE1 || /STATE2 || (/MEM && STATE456)

/IRCLK

C3

This signal is asserted during state 2. It causes the data on the held Data Bus
to be latched into the instruction register.

/IRCLK = /STATE2

/OE

C3

This signal is the output enable for memory and devices. When active, the
Memory Unit allows the currently addressed device to place data on the Data
Bus. /OE is always asserted during states 1 and 2 so that the current
instruction can be fetched. It is also asserted during states 5 and 6 when the
instruction is a memory read.

STATES56 = /STATES || /STATE6
/OE = /STATE1 || /STATE2 || (/MEMLD && STATES6)

/WE

C3

This signal is connected to the write-enable input of all RAM and other
devices that can be written to on the Memory Unit. During state 5 it provides
the write strobe that causes the selected device to store the contents of the
data bus.

/WE = /STATE5 && /MEMST

/REGSE C3 | This signal is the select enable for registers. When active, the Register Unit
allows registers to place data on the A, B and C Buses. It also allows a
register to be written to when /REGWRI is asserted.

/REGSE = /STATE3 || /PHASE2

/ALUOE C3 | When this signal is asserted, the ALU output is enabled onto the R-Bus.
Since the ALU must be enabled at the same time as the registers, /ALUOE is
the same signal as /REGSE.

/ALUOE = /REGSE

/PCREG C3 [This signal indicates that a register instruction is in fact a PC-to-register
instruction. It is asserted whenever the instruction is a register instruction
and the instruction has bit 4 active and bit 3 inactive.

/PCREG = /OPREG && IR4 && !IR3

/EFFADR C3 | This signal is asserted from state 3 until state 6 when the instruction is a
memory instruction. It is involved in the address bus generation for
memory access.

/EFFADR = /MEM && (STATE3 || STATE4 || STATES || STATE6)

IBANKMUX | C7 | Thisis an alias for IR5 which is used to generate ALUB.

/IBANKMUX = /IR5

IALUO C7 | Thisis an alias for IRe. It is bit 0 of a 4-bit code in instructions that specifies
the ALU operation.
/IALU@ = /IRO

IALUl C7 | Thisis an alias for IR1. It is bit 1 of a 4-bit code in instructions that specifies
the ALU operation.
/IALU1l = /IR1

IALU2 C7 | Thisis an alias for IR2. It is bit 2 of a 4-bit code in instructions that specifies
the ALU operation.

/IALU2 = /IR2
IALU3 C7 | Thisis an alias for IR15. It is bit 3 of a 4-bit code in instructions that

specifies the ALU operation.

/IALU3 = /IR15

IREGSAOQ

Cc7

This is an alias for IR8. It is bit 0 of a 3-bit code in register instructions that
specifies the A register.

/IREGSA® = /IR8

IREGSAl

C7

This is an alias for IR9. It is bit 1 of a 3-bit code in register instructions that
specifies the A register.

/IREGSA1 = /IR9

IREGSA2

C7

This is an alias for IR10. It is bit 2 of a 3-bit code in register instructions that
specifies the A register.

/IREGSA2 = /IR1@

IREGSBO

C7

This is an alias for IR5. It is bit 0 of a 3-bit code in register instructions that
specifies the B register.

/IREGSBO = /IR5

IREGSB1

C7

This is an alias for IR6. It is bit 1 of a 3-bit code in register instructions that
specifies the B register.

/IREGSB1 = /IR6

IREGSB2

Cc7

This is an alias for IR7. It is bit 2 of a 3-bit code in register instructions that
specifies the B register.

/IREGSB2 = /IR7

IREGSCO

Cc7

This is an alias for IR11. It is bit 0 of a 3-bit code in register instructions that
specifies the C register.

/IREGSCO = /IR11

IREGSC1

Cc7

This is an alias for IR12. It is bit 1 of a 3-bit code in register instructions that
specifies the C register.

/IREGSC1 = /IR12

IREGSC2

Cc7

This is an alias for IR13. It is bit 2 of a 3-bit code in register instructions that
specifies the C register.

/IREGSC2 = /IR13

Buses

Name

Width

Function

DATABUS

16

This is a bidirectional bus which allows transfer of data to or from a
memory-mapped device. When no device is enabled, this bus goes
open-circuit. Therefore, inside the Control Unit, the last state of this bus
is held by a bus-hold circuit, creating an internal ‘held Data Bus'"
HDATABUS.

if (/MEMW) DATABUS = HCBUS

ADDRBUS

24

This specifies the address of a device from which data is to be read or to
which data is to be written.

ADDRBUS<15:0>
ADDRBUS<23:16>

/EFFADR ? HRBUS : PC
(/EFFADR && !/PCREG) ? D-Bank : I-Bank

RIN

16

This bus is connected to the inputs of each register on the Register Unit.
It carries the data to be written during a register write operation.

RIN = /MEMLD ? HDATABUS : HRBUS

ABUS

16

Connected between the Register Unit and the A input of the ALU, this
specifies the ALU ‘A’ operand. When no register is selected, this bus goes
open-circuit. Therefore, inside the ALU, the last state of this bus is held
by a bus-hold circuit, creating an internal ‘held A bus’: HABUS.

BBUS

16

Connected between the Register Unit and the Control Unit, this specifies
the ALU ‘B’ operand when the instruction is a register instruction. When
no device is enabled, this bus goes open-circuit. Therefore, inside the
Control Unit, the last state of this bus is held by a bus-hold circuit,
creating an internal ‘held B Bus': HBBUS.

CBUS

16

Connected between the Register Unit and the Control Unit, this carries
the data to be written during a register to memory write operation. It is
also this data that is checked when deciding whether or not to take a
conditional branch. When no register is selected, this bus goes
open-circuit. Therefore, inside the Control Unit, the last state of this bus
is held by a bus-hold circuit, creating an internal ‘held C bus’: HCBUS.

ALUB

16

Connected between the Control Unit and the B input of the ALU, this
specifies the ALU ‘B’ operand.

P IBANKMUX ? BANKOUT : PCVAL
Q = /BREGLIT ? ILITVAL : HBBUS
ALUB = /PCREG ? P : Q

RBUS

16

This bus carries the result of an ALU operation from the ALU to the
Control Unit. When the ALU output is disabled, this bus goes
open-circuit. Therefore, inside the Control Unit, the last state of this bus
is held by a bus-hold circuit, creating an internal ‘held R bus’: HRBUS.

REGSAn

This is the A-register select control bus. It is used by the Control Unit to
tell the Register Unit which register to select onto the A bus.

REGSAQ
REGSA1
REGSA2

/OPIMM ? IREGSCO : IREGSAO
/OPIMM ? IREGSC1 : IREGSAl
/OPIMM ? IREGSC2 : IREGSA2

REGSBn

This is the B-register select control bus. It is used by the Control Unit to
tell the Register Unit which register to select onto the B bus.

REGSB@
REGSB1
REGSB2

TREGSBO
IREGSB1
IREGSB2

REGSCn

This is the C-register select control bus. It is used by the Control Unit to
tell the Register Unit which register to select onto the C bus.

REGSCO IREGSCO
REGSC1 IREGSC1
REGSC2 = IREGSC2

ALUn

This is the ALU control code bus. It is used by the Control Unit to tell the
ALU which operation to perform.

ALUG = TALU®O
ALU1 = TALU1
ALU2 = TALU2
ALU3 = TALU3

